HO SCALE
 DOUBLE SLIP SWITCH ROUTE INDICATOR PANEL

BY JIM WILLIAMS

THE MODELIING PROCESS

1. THE PLAN
 2. COMPONENTS 3. CONSTRUCTION 4. INSTALLATION 5. FINAL DETAILS

Routing trains through Clute yard to get to Dow plant can get congested when switchers are present.

Let's add a double slip switch crossover to get to get direct access to the Dow Plant.

Added a double slip switch
crossover to get to get direct access to the Dow Plant.

Using the double slip switch requires coordinating the route and the switch-points position.

Visually this takes time and may be error prone.

Let's add a panel to show the route and use an Arduino to illuminate the five LEDs.

Steve Priest's layout has a double-slip switch with an LEDilluminated panel to show the route.

1.A INSERT DO IT YOURSELF ARDUINO TRAINING STEP BOUGHT A SPARKFUN KIT

1.B WIRING PROTOCOL TERMINAL BARRIER STRIPS

This diagram shows the outputs of an Arduino connected to the five LED's, the two switch machines providing position input information to the Arduino, and the five volt DC power supply.

Rough sketch used to identify the connector hardware needed.

Numbering the wires, and color selection is identified.

Notes on relationship between switch positions (Tortoise) and illuminated LEDs.

The switch machines happened to be numbered S9 and S21 on the BVRS club layout.

Measured output from the Tortoise switch-machines:
"High" is 5 vdc
"Low" is 0 vdc

THE MODELIING PROCESS

1. THE PLAN 2. COMPONENTS 3. CONSTRUCTION 4. INSTALLATION 5. FINAL DETAILS

Major components:

Mounting bracket to
attach to underside of layout.

Arduino R3 attaches to this bracket.

Major
components:
Arduino UNO R3 computer

Major components:

Screw terminal connector plate (shield) mounts on top of the Arduino for wire connections.

Major
components:
PC
component soldering board, 2.3 mm hole spacing.

Major
components:
6 screw terminal connector, 2.3 mm spacing

Major components:

1.8 mm

 green LED with resistorWill need ten of these, five per panel

Major components:

5 volt dc regulated power supply, mfg is Mean Well.

Major
components:
$3.5-\mathrm{mm}$ male and female plugs to screw terminal adapters.

Major components:

USB cable used for down
loading the program to the Arduino

THE MODELIING PROCESS

1. THE PLAN 2. COMPONENTS 3. CONSTRUCTION 4. INSTALLATION 5. FINAL DETAILS

Testing the program on a slip switch simulator.

The foggle switches simulate two switch machines.

The red Arduino and the white breadboard is part of a Spark Fun test kit.

DOUBLE SLIP SWITCH

Function: sets the leds to show route selected through a double slip su
update $19 / 30 / 18$ change to switchs 9 and 21 , and digitalRead update 2 9/30/18 add logic for switch combinations update 3 12/15/18 remove print statements
*/
int ledlout $=2$;
int led2out $=3$;
int led3out $=4$;
int led4out = 5;
int led5out $=6$;
int switch9Pin = 8; // pin for track switch 9
int switch21 Pin =9; // pin for track switch 21 int switch9 = 0; // value for track switch 9 int switch21 = 0; // value for track switch 21

void setup()

//setup led outputs pinMode(ledlout, OUTPUT); pinMode(led2out, OUTPUT): pinMode(led3out, OUTPUT): pinMode(led4out, OUTPUT); pinMode(led5out, OUTPUT);
// setup inputs
pinMode(switch9, INPUT); pinMode(switch21, INPUT);
// turn off all leds
digitalWrite(ledlout, LOW); // Turn off the LED delay(1); // Wait for one msecond digitalWrite(led2out, LOW); // Turn off the LED
delay(1). delay(1); // Wait for one msecond digitalWrite(led3out, LOW); // Turn off the LED delay(1); // Wait for one msecond digitalWrite(led4out, LOW); // Turn off the LED delay(1); // Wait for one msecond digitalWrite(led5out, LOW); // Turn off the LED delay(1000):
void loop()
/* loop to read state of switches \#9 and \#21 * then set LEDs on as appropriate
swich9 = digitalRead (switch9Pin): switch21 = digitalRead (switch21Pin);
if (switch9 $==$ LOW \& \& switch21 $==$ LOW) $\{$ delay(2);
digitalWrite (ledl out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite(led2out, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds digitalWrite(led3out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite(led4out, HIGH); // Turn on the LED delay(10): // Wait for ten milliseconds digitalWrite(led5out, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds \}
if (switch9 $==$ HIGH \& \& switch2 $1==$ LOW) $\{$ delay(2);
digitalWrite(ledlout, HIGH); // Turn on the LED delay(10);
// Wait for ten milliseconds digitalWrite (led2out, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds digitalWrite(led3out, HIGH); // Turn on the LED delay (10); // Wait for ten milliseconds digitalWrite(led4out, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds digitalWrite(led5out, HIGH); // Turn on the LED delay(10); \}
if (switch9 == LOW \&\& switch21 == HIGH)\{ delay(2);
digitalWrite(ledlout, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds digitalWrite(led2out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite (led3out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite(led4out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite(led5out, LOW); // Turn off the LED delay(10); // Wait for ten milliseconds
\}
if (switch9 $==$ HIGH \& \& switch21 $==$ HIGH) $\{$ delay(2);
digitalWrite(ledlout, LOW); // Turn off the LED delay(10) // Wait for ten milliseconds digitalWrite(led2out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite(led3out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds digitalWrite (led4out, LOW); // Turn off the LED delay(10): // Wait for ten milliseconds digitalWrite(led5out, HIGH); // Turn on the LED delay(10); // Wait for ten milliseconds

Bend the 1.8 mm LEDs so that the light will shine through holes in the small panels and the wires will lay flat on the panels backside.

The two LED wires may break.

Two $56 \mathrm{~mm} x$ 42 mm panels are used, one for each side of the peninsula table.

Canopy glue was used to attach the LEDs to the boards.

The wires from the panels are connected to 6 terminal connector strip, and the 20 ga wires are soldered to them.

The two panels are connected to the Arduino for final testing of the panels.
$0.010^{\prime \prime}$ flat styrene plastic covers added over the panels and painted black

THE MODELIING PROCESS

1. THE PROTOTYPE 2. SCALE DRAWINGS 3. CONSTRUCTION 4. INSTALLATION 5. WEATHERING \& FINAL DETAILS

Remove left hand turnout, add space for the double slip switch, and space for the crossover switch on the outside track

New ballast

 being added to the new cross over.

View of one of the screw terminal connectors between one of the LED panels and the wires to the Arduino.

Drilled a $5 / 8^{\prime \prime}$ hole through side of the table for wires

The Arduino stack is mounted to the underside of the layout.

The blue wire is the +5 vdc from the power supply.

This is one of the two switch machines for the double slip switch.

I used blue \& black wire color for the 5 v de circuits.

The other panel's LED wires.

THE MODELLING PROCESS

1. THE PROTOTYPE 2. SCALE DRAWINGS 3. CONSTRUCTION 4. INSTALLATION

 5. WEATHERING \& FINAL DETAILSThe
completed panels are recessed into the tables.

The double slip-switch is in the middle of the screen.

The LED's are very bright, so a 0.010 " white plastic sheet covered them.

THE END

